Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 22(11): 1923-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200009

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.


Assuntos
Dependovirus/genética , Distrofina/genética , Membro Anterior/fisiopatologia , Distrofia Muscular de Duchenne/terapia , RNA Nuclear Pequeno/genética , Animais , Estudos de Coortes , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Éxons , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Infusões Intravenosas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , RNA Nuclear Pequeno/metabolismo
2.
Sci Transl Med ; 6(220): 220ra10, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24452262

RESUMO

Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Animais , Dependovirus/genética , Diafragma , Cães , Vetores Genéticos , Genótipo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Debilidade Muscular , Mutação , Miopatias Congênitas Estruturais/mortalidade , Proteínas Tirosina Fosfatases não Receptoras/genética
3.
Hum Gene Ther ; 24(9): 807-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24010701

RESUMO

Adeno-associated virus serotype 8 (AAV8) has been demonstrated to be effective for liver-directed gene therapy in humans. Although hepatocytes are the main target cell for AAV8, there is a loss of the viral vector because of uptake by macrophages and Kupffer cells. Reducing this loss would increase the efficacy of viral gene therapy and allow a dose reduction. The receptor mediating this uptake has not been identified; a potential candidate seems the macrophage scavenger receptor A (SR-A) that is involved in the endocytosis of, for instance, adenovirus. In this study we show that SR-A can mediate scAAV8 endocytosis and that blocking it with polyinosinic acid (poly[i]) reduces endocytosis significantly in vitro. Subsequently, we demonstrate that blocking this receptor improves scAAV-mediated liver-directed gene therapy in a model for inherited hyperbilirubinemia, the uridine diphospho-glucuronyl transferase 1A1-deficient Gunn rat. In male rats, preadministration of poly[i] increases the efficacy of a low dose (1×10¹¹ gc/kg) but not of a higher dose (3×10¹¹ gc/kg) scAAV8-LP1-UT1A1. Administration of poly[i] just before the vector significantly increases the correction of serum bilirubin in female rats. In these, the effect of poly[i] is seen by both doses but is more pronounced in the females receiving the low vector, where it also results in a significant increase of bilirubin glucuronides in bile. In conclusion, this study shows that SR-A mediates the endocytosis of AAV8 in vitro and in vivo and that blocking this receptor can improve the efficacy of AAV-mediated liver-directed gene therapy.


Assuntos
Dependovirus/imunologia , Endocitose/efeitos dos fármacos , Células de Kupffer/imunologia , Poli I/metabolismo , Receptores Depuradores Classe A/antagonistas & inibidores , Animais , Bilirrubina/sangue , Células CHO , Linhagem Celular , Cricetulus , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/terapia , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Vetores Genéticos , Glucuronosiltransferase/genética , Células HEK293 , Hepatócitos/virologia , Humanos , Células de Kupffer/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Ratos , Receptores Depuradores Classe A/efeitos dos fármacos , Receptores Depuradores Classe A/metabolismo , Transdução Genética
4.
PLoS One ; 8(4): e61618, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613884

RESUMO

Widespread gene delivery to the retina is an important challenge for the treatment of retinal diseases, such as retinal dystrophies. We and others have recently shown that the intravenous injection of a self-complementary (sc) AAV9 vector can direct efficient cell transduction in the central nervous system, in both neonatal and adult animals. We show here that the intravenous injection of scAAV9 encoding green fluorescent protein (GFP) resulted in gene transfer to all layers of the retina in adult mice, despite the presence of a mature blood-eye barrier. Cell morphology studies and double-labeling with retinal cell-specific markers showed that GFP was expressed in retinal pigment epithelium cells, photoreceptors, bipolar cells, Müller cells and retinal ganglion cells. The cells on the inner side of the retina, including retinal ganglion cells in particular, were transduced with the highest efficiency. Quantification of the cell population co-expressing GFP and Brn-3a showed that 45% of the retinal ganglion cells were efficiently transduced after intravenous scAAV9-GFP injection in adult mice. This study provides the first demonstration that a single intravenous scAAV9 injection can deliver transgenes to the retinas of both eyes in adult mice, suggesting that this vector serotype is able to cross mature blood-eye barriers. This intravascular gene transfer approach, by eliminating the potential invasiveness of ocular surgery, could constitute an alternative when fragility of the retina precludes subretinal or intravitreal injections of viral vectors, opening up new possibilities for gene therapy for retinal diseases.


Assuntos
Dependovirus/genética , Retina/metabolismo , Transdução Genética/métodos , Animais , Sangue/virologia , Feminino , Vetores Genéticos/genética , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/metabolismo , Retina/citologia , Retina/virologia
5.
Hum Gene Ther ; 21(10): 1273-85, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20486768

RESUMO

A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18 x 10¹¹ particles/ml; 95% confidence interval [CI], 7.89 x 10¹¹ to 1.05 x 10¹² particles/ml), vector genomes ({X}, 3.28 x 10¹° vector genomes/ml; 95% CI, 2.70 x 10¹° to 4.75 x 10¹° vector genomes/ml), transducing units ({X}, 5.09 x 108 transducing units/ml; 95% CI, 2.00 x 108 to 9.60 x 108 transducing units/ml), and infectious units ({X}, 4.37 x 109 TCID50 IU/ml; 95% CI, 2.06 x 109 to 9.26 x 109 TCID50 IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed.


Assuntos
Dependovirus , Vetores Genéticos , Bioensaio , DNA Viral/química , Dependovirus/classificação , Dependovirus/genética , Dependovirus/isolamento & purificação , Dependovirus/fisiologia , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/isolamento & purificação , Genoma Viral , Vírus Auxiliares , Reação em Cadeia da Polimerase , Padrões de Referência , Transdução Genética , Replicação Viral
6.
Mol Ther ; 17(7): 1187-96, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19367261

RESUMO

Therapeutic gene delivery to the whole spinal cord is a major challenge for the treatment of motor neuron (MN) diseases. Systemic administration of viral gene vectors would provide an optimal means for the long-term delivery of therapeutic molecules from blood to the spinal cord but this approach is hindered by the presence of the blood-brain barrier (BBB). Here, we describe the first successful study of MN transduction in adult animals following intravenous (i.v.) delivery of self-complementary (sc) AAV9 vectors (up to 28% in mice). Intravenous MN transduction was achieved in adults without pharmacological disruption of the BBB and transgene expression lasted at least 5 months. Importantly, this finding was successfully translated to large animals, with the demonstration of an efficient systemic scAAV9 gene delivery to the neonate and adult cat spinal cord. This new and noninvasive procedure raises the hope of whole spinal cord correction of MN diseases and may lead to the development of new gene therapy protocols in patients.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Transdução Genética/métodos , Animais , Animais Recém-Nascidos , Gatos , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos/administração & dosagem , Imuno-Histoquímica , Bombas de Infusão , Camundongos , Camundongos Endogâmicos C57BL , Doença dos Neurônios Motores/terapia , Gravidez , Medula Espinal/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Virol ; 81(10): 5385-94, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17314166

RESUMO

Dendritic cells (DC) are antigen-presenting cells pivotal for inducing immunity or tolerance. Gene transfer into DC is an important strategy for developing immunotherapeutic approaches against infectious pathogens and cancers. One of the vectors previously described for the transduction of human monocytes or DC is the recombinant adeno-associated virus (rAAV), with a genome conventionally packaged as a single-stranded (ss) molecule. Nevertheless, its use is limited by the poor and variable transduction efficiency of DC. In this study, AAV type 1 (AAV1) and AAV2 vectors, which expressed the enhanced green fluorescent protein and were packaged as ss or self-complementary (sc) duplex strands, were used to transduce different DC subsets generated ex vivo and the immunophenotypes, states of differentiation, and functions of the subsets were carefully examined. We show here for the first time that a single exposure of monocytes (M(o)) or CD34(+) progenitors (CD34) to sc rAAV1 or sc rAAV2 leads to high transduction levels (5 to 59%) of differentiated M(o)-DC, M(o)-Langerhans cells (LC), CD34-LC, or CD34-plasmacytoid DC (pDC), with no impact on their phenotypes and functional maturation of these cells, compared to those of exposure to ss rAAV. Moreover, we show that all these DC subpopulations can also be efficiently transduced after commitment to their differentiation pathways. Furthermore, these DC subsets transduced with sc rAAV1 expressing a tumor antigen were potent activators of a CD8(+)-T-cell clone. Altogether, these results show the high potential of sc AAV1 and sc AAV2 vectors to transduce ex vivo conventional DC, LC, or pDC or to directly target them in vivo for the design of new DC-based immunotherapies.


Assuntos
Células Dendríticas/virologia , Dependovirus/genética , Vetores Genéticos , Transdução Genética , 2-Acetilaminofluoreno , Linhagem Celular , Células Cultivadas , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Humanos
8.
Hum Gene Ther ; 16(11): 1298-306, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16259563

RESUMO

Transient local overexpression of genes that promote lung defense or repair may help to protect or promote alveolar development in premature neonates. We showed that the use of adenoviral vectors in neonates was limited by the induction of lung growth disorders. In the present work we compare the efficiency of gene transfer to the neonatal lung by three adeno-associated viral vectors: rAAV1, rAAV2, and rAAV5. Transduction efficiency was first measured in vitro, by infecting A549 immortalized human lung epithelial cells, and primary epithelial and mesenchymal cells isolated from human fetal lung. AAV vectors yielded similar low levels of luciferase gene expression in the different cell types. In vivo transduction efficiency was evaluated in newborn rats, with AAV-LacZ vectors being intratracheally instilled at 3 days of age. Both rAAV5 and rAAV1, but not rAAV2, induced significant lung beta-galactosidase expression, which persisted on day 35. Highest beta- galactosidase levels were measured with rAAV5, but remained far lower than those obtained with adenoviral vectors. A transient increase in alveolar macrophages was observed on day 6, but not on day 8, after rAAV5-LacZ instillation. Morphometric evaluation of lung structures was performed on day 21, and showed no altered lung growth. We conclude that rAAV1 or rAAV5 was more efficient at mediating gene transfer in the neonatal lung than was rAAV2, without adversely affecting lung development. However, in vivo transgene expression was relatively low, and needs to be improved for future therapeutic use of these adeno-associated vectors.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Humanos , Óperon Lac , Pulmão/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley , Recombinação Genética
9.
Blood ; 106(9): 2962-8, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15998835

RESUMO

Regulators of G-protein signaling (RGS) constitute a family of proteins involved in the negative regulation of signaling through heterotrimeric G protein-coupled receptors (GPCRs). Several RGS proteins have been implicated in the down-regulation of chemokine signaling in hematopoietic cells. The chemokine stromal-cell-derived factor 1 (SDF-1) activates migration of hematopoietic progenitors cells but fails to activate mature megakaryocytes despite high levels of CXC chemokine receptor 4 (CXCR4) receptor expression in these cells. This prompted us to analyze RGS expression and function during megakaryocyte differentiation. We found that RGS16 and RGS18 mRNA expression was up-regulated during this process. Overexpressing RGS16 mRNA in the megakaryocytic MO7e cell line inhibited SDF-1-induced migration, mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) activation, whereas RGS18 overexpression had no effect on CXCR4 signaling. Knocking down RGS16 mRNA via lentiviral-mediated RNA interference increased CXCR4 signaling in MO7e cells and in primary megakaryocytes. Thus, our data reveal that RGS16 is a negative regulator of CXCR4 signaling in megakaryocytes. We postulate that RGS16 regulation is a mechanism that controls megakaryocyte maturation by regulating signals from the microenvironment.


Assuntos
Quimiocinas CXC/metabolismo , Megacariócitos/metabolismo , Proteínas/metabolismo , Proteínas RGS/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular , Linhagem Celular , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiotaxia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Megacariócitos/citologia , Conformação de Ácido Nucleico , Proteínas/química , Proteínas/genética , Proteínas RGS/química , Proteínas RGS/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...